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Abstract. The electronic motion in quasiperiodic systems (the Harper model, the Fibonacci 
chain, two- and three-dimensional Fibonacci quasilattices) is studied, in the framework of a 
tight-binding Hamiltonian. The spreading with time of the wavepacket LS described in terms of 
the behaviour of the autocorrelation function C(r). It is found that. in all cases, C(r) - C6. 
For the H q e r  model with A < 2, the motion of the electron is ballistic (8 = I), which goes 
against a previous estimate of 6 = 0.84. We show that this discrepancy is due to the neglect 
of a logarithmic contribution in the scaling analysis. For the Harper model with A = 2 and 
the Fibonacci chain. the motion is non-ballistic with 0 c S c 1. For the higher-dimensional 
Fibonacci quasilattices, C(r) exhibits a Lmnsition from a ballistic to a non-ballistic behaviour, 
upon varying the modulation strength of the quasiperiodicity. The relation between C(r) and 
the fractal dimensions of the spectral measure is also studied. 

1. Introduction 

In recent years, much attention has been paid to the investigation of the electronic properties 
of quasiperiodic systems, especially the energy spectrum and the wavefunctions. For 1D 
quasiperiodic structures, the spectral measure is singularly continuous and the eigenstates 
are critical, generally speaking c1-61. For the high-dimensional quasiperiodic systems, the 
fact that it is difficult to get exact results in general (except for several special solvable 
quasilattices such as the high-dimensional Fibonacci quasilattices and the labyrinth tilings) 
implies that it is still hard to obtain a comprehensive understanding [3, 7-91, Numerical 
calculations suggest that the spectrum of a high-dimensional quasilattice can be band-like 
with a finite number of gaps, fractal-like with zero band width, or a mixture with some 
parts band-like and some parts fractal-like. There is current interest [13-191 in the quantum 
dynamics of the systems which are associated with the complex spectra as stated above. The 
current work is directed at revealing the relationship between the electronic motion and the 
spectral measure. In addition, experimental results indicate that quasicrystals have unusual 
electronic transport properties [lo]. Since conductivity is associated with the electronic 
motion in the system, it is important to study the dynamics of an electron in a quasiperiodic 
system. To study the dynamics, a direct approach is to investigate the time evolution of an 
electronic wavepacket. The procedure is as follows. 

Consider a system with number of sites N .  The Hamiltonian of the system has the 
following tight-binding form 

0953-8984/95/448383+22s19.50 @ 1995 IOP Publishing Ltd 8383 



8384 

where U, is the site energy at the ith site, vij are the hopping matrix elements. In our case, 
only nearest-neighbour interactions are considered. An electron is initially placed (at time 
t = 0) at a site position TO and is numbered n = 0 for the system. Then the time evolution 
of this state is given by the Schrodinger equation: 

J X Zhong and R Mosseri 

d 
dt i-W(t) = H W ( t )  (2) 

where W ( t )  = (. .., $ n - ~ ,  $n, $"+,, . . .)T is the wavefunction at time t ,  h ( t )  is the 
coefficient of W ( t )  at the nth site. The initial condition is given by 

(3 1 
Equation ( 2 )  with the initial condition (3) can be solved by using, for instance, the finite 

H @ ( E )  = E @ ( E )  (4) 
where E is theeigenenergy and @ ( E )  is theeigenvector, @ ( E )  = (. . . , &-,, @", &+,, . . .)T. 
We use the latter approach. By solving (4), one gets all the eigenenergies Ej ( j  = 
I .  2, . . . , N) and the corresponding eigenstates @(E,) .  Since @(E,) is an orthonormal 
complete set, the wavefunction V ( f )  is then given by 

I$& = 0)l = &,o. 

time step RungeKutta method or by solving the static Schrodinger equation 

~ ( t )  = Ccj@(E,)exp(-iEjt). (5) 
i 

It follows from the initial condition (3) that 

cj = &Ej).  (6) 
Then the wavefunction W(t)  is given by 

= C@:(Ej)A(Ej) exp(-iEjt) (7) 
1 

where @;(E,) is the complex conjugate of @o(Ej). 

one should take care that the wavepacket does not approach the boundaries. 
calculations, we use fixed boundary conditions. 

square displacement d ( t )  of the wavepacket defined as 

One can only treat finite size system numerically. In order to study long-time evolution 
In our 

Two quantities have been used to describe the motion of the electron. One is the mean 

The other is the autocorrelation function P ( t )  (i.e. the probability of the wavepacket being 
in the initial position at time t )  

P ( t )  = l+O(t)12 (9) 
and its time-averaged version 

I 

C ( t )  = f P(r') dt' 

Numerical investigations of the motion of an electron in quasiperiodic systems were 
mainly done on typical models such as the Fibonacci chain and the Harper model. 

The Harper model [ I ]  is built on a 1D chain. The site energies of the Hamiltonian are 
U, = h cos (2rrun), where U = (A - 1)/2 is the golden mean. The nearest-neighbour 
hopping integrals uij = 1 and all others are zero. The static version of this model has 
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been extensively studied and is known to display Anderson-like 1ocaliza.tion-delocalization 
transitions. When A < 2, the spectrum is absolutely continuous and all the eigenstates are 
extended. In the region A > 2, the spectrum is point-like and all the states are localized. 
A = 2 is the critical point at which the spec!” is singularly continuous and the states are 
critical, i.e., neither localized nor extended. 

The Fibonacci chain is the ID paradigmatic model of quasicrystals [2-51. The ‘diagonal’ 
model assumes that the hopping parameters ujj = 1 and the site energies take two kinds 
of values, U, and ub, which forms a Fibonacci sequence, Without loss of generality, one 
can take uo = -ub = -U. U > 0. Then, the parameter U represents the strength of the 
quasiperiodic modulation. One can also introduce an ‘off-diagonal’ model by assuming that 
the site energies vanish (ui = 0) and that the hopping parameters form a Fibonacci sequence 
taking two values 1 and U. It is known that the spectra of both models on the Fibonacci 
chain are singularly continuous. 

The calculations of d ( t )  for the Fibonacci chain and Harper models [13, 15, 181 show 
that the asymptotic behaviour of d ( t )  follows a power-law growth 

d ( t )  - tB. (11) 
For the Harper model, the motion of the electron is ballistic with p = 1 for A < 2 and 
+4 = 0 for A > 2, For the Fibonacci chain model and the Harper model with A = 2, one 
finds 0 < ,9 < 1. Guarneri [14] analytically proved that the power-law growth of d ( t )  
is a feature of ID systems with singularly continuous measures. Moreover, an inequality 
relation between the exponent B and the spectral box-counting dimension D1 is found: 

B > DI (12) 
where D, is the information dimension of the spectral measure. Numerical results for 
the Harper model further confirm the above relation [18]. The calculation of d ( t )  for 2D 
octagonal tiling was performed by Passaro et al [19]. It was found that d ( t )  also exhibits 
a power-law growth with 0 < ,9 < 1. 

The autocorrelation function has been used to study the electronic properties of various 
systems [ l l ,  12, 161. However, the relation between the decay of the autocorrelation 
function and the nature of the spectral measure of the system is still far from being 
understood. Numerical results [16] show that, for the Harper and Fibonacci chain models, 
C ( t )  has a power-law decay 

C ( t )  - t-S. (13) 
For the Harper model, S has been found to be 6 = 0.84 & 0.01; for A < 2 for A > 2, 
S = 0; for A = 2, C(t) has an anomalously low decay with exponent 6 = 0.14 i 0.01. For 
the Fibonacci chain diagonal model, 6 decreases from 0.84 to 0 with the increase of the 
modulation strength. These numerical results are quite surprising since we know that the 
Fibonacci chain becomes a 1D periodic lattice if the modulation turns to zero we also know 
that the Harper model the spectrum is absolutely continuous for A < 2. We are therefore 
led to ask the following questions: 

(1) What is the difference in the behaviour of C(t)  in a periodic lattice, the Harper 
model with A < 2 and the Fibonacci chain model in the limit of zero modulation? 

(2) What is the origin of this special value 0.84? 
(3) How does C( t )  decay with time in high-dimensional quasiperiodic systems? 
To the best of our knowledge, almost all of the studies concerning the autocorrelation 

functions of quasiperiodic structures have focused on the 1D case. It is therefore very 
interesting to investigate the behaviour of C(t) of high-dimensional quasiperiodic lattices 
and to look at the dimensionality dependence. Such a study is also important in order 
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to understand the transport properties of quasicrystals since the autocorrelation function 
describes the decay of the wavepacket, which is linked with the quantum diffusion of 
electrons. 

This paper is organized as follows: in section 2, we study the autocorrelation functions 
of periodic systems in order to compare them with our results for other models. In section 3, 
the Harper model and 1D Fibonacci chain are considered. In section 4, we study the so-called 
2D and 3D Fibonacci quasiperiodic lattices. The relationship between the autocorrelation 
function and the spectral measure is discussed in section 5. Discussions and conclusion are 
given in section 6. 

J X Zhong and R Mosseri 

2. The autocorrelation function of a periodic lattice 

It is first necessary to understand the asymptotic behaviour of the autocorrelation function 
of a periodic lattice to further study quasiperiodic systems. 

Let us study the usual 1D periodic chain, 2D square lattice and 3D cubic lattice. Let the 
distance between two first-neighbour sites be equal to a. The nearest-neighbour hopping 
parameters are uij = U and the site energies are ui = UO. One can use Blwh theorem and 
analysis in the momentum space for the periodic lattice, because of the existence of periodic 
translational symmetry. In the 1D case, it is well known that the solution of (2) reads as 

with 

where k is the wavevector. It follows from (14) and (15) that 

I D  $o(?)  = exp(-iuot)J&ur) 
where J&) is the Bessel function of zero order. Similarly to the 1D case, it is easy to 
show that 

2D 'k0(t) = exp(-iuor)J$(2ut) 
3D +&) = exp (-iuot)J;(2ut). 

The autocorrelation functions P ( r )  and C ( i )  are then given b j  

~ ( t )  = ~ , Z ~ ( 2 u r )  (19) 
I 

C(t) = f J~D(2ut ' )d t '  (20) 

where D is the dimension of the periodic lattices. Without loss of generality, we assume 
uo = 0 and U = 1 in the following analysis. 

For the Bessel function J&), one has the following asymptotic behaviour 
- 

J&) - /'cos X X  (x - r/4) ( x  + 00) (21) 

which leads to 

P ( t )  - t - D .  

Since 
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the integral 

is then convergent for D = 2 and D = 3. We rewrite (20) as 

From (21), (24) and (25), we have 

1 C(r) - t-’ [’ -I2 - -1-1 +o(t-Z) 3 
2D 

2 879 

1 3D C ( t )  - t-I [’ 5 -2 - I ~  - --f + o(t-3) 2 3219 
To analyse the 1D case, let us take a time such that to is large. If t > to, the asymptotic 
behaviour (21) can be used. We then rewrite C ( t )  as 

C ( t )  = A @ )  + B ( t )  

since IJo(x)l < 1, then 
to 
t 

Taking the limit t + CO and using (21), we find 

A(?) < -. 

and since the integral 

R’F d,x 
is convergent, we finally have 

(34) 

We have calculated numerically the integration tC(r),  by either directly diagonalizing 
the Hamiltonian matrix and using (7) or by using the Bessel function (see figure 1). We 
find that the results agree with the analytical conclusion, 

with CO = 0.529 k 0.001 and CI = 0.366 i 0.001. We would like to stress that, due to 
the presence of the logarithmic contribution, it is rather difficult to extract a meaningful 
exponent if one performs, for instance, a least-squares fit directly to the curve of logC(t) 
versus logt in a finite time scale. For example, in the case of the 1D periodic chain, one 
can exwess C( t )  as c(t) - t-’ with 

1 
2n 

~ ( t )  - -t-’lnt. 

1D : C ( t )  - (CO + C’ logt)t-’ (35) 

. .  . .  

log [CO + c ,  log t ]  
log f 

6 = 1 -  

Obviously 8 varies with time and approaches 1 asymptotically. I f f  < lo3, we find 6 sx 0.84. 
Since, from a numerical point of view, one can use clusters of limited size, the time scale 
chosen is then also limited, and one should therefore be very careful in the scaling analysis. 
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logt 
Fwre 1. Plot of rC(r) versus log1 for h e  ID periodic lattice. 

3. 1D quasiperiodic systems 

On the basis of the above results for periodic lattices, we now study the decay of C ( t )  
for ID quasiperiodic systems. The numerical calculations are performed along the lines of 
those introduced in section 1. Two typical quasiperiodic Hamiltonian models, the Harper 
model and the Fibonacci model are investigated here. 

3.1. The Harper model 

The system studied has N w 3000 sites. The electron is initially placed at the zeroth site. 
The decay of C(t) is presented in figure 2. Our numerical calculation indicates that, for 
A > 2, C ( t )  - to. In the case of h = 2, C ( t )  - f(logr)t-', where S = 0.13 f 0.01 and 
f ( x )  is a periodic function with period 0.493r0.01. The exponents for these two cases are in 
agreement with previous calculations [16]. However, C ( t )  for = 2 given in [ 161 does not 
show periodic oscillation. Since the spectrum for A = 2 is fractal-like, one expects that C( t )  
will oscillate with time since C(r) is the FourierStieltjes transform of the spectral measure. 
We shall discuss this later. For A < 2, Ketzmerick er al 1161 found that C(t) - t-' with 
6 = 0.84f0.01. In our calculation, we also find this value if we do a standard least-squares 
fit to log C(r) versus logt. However, if we choose a different time scale to do the fit, we 
find that the exponent varies with the chosen time scale. According to what we have learnt 
in the ID periodic lattice, we plot tC(t) versus logt in figure 2(b). We find that, similar 
to the ID periodic lattice, C(t)  - (CO + c, logt)t-' for h < 2. with CO = 0.30 f 0.01 and 
C I  = 1.65 f 0.01. As stated above, for A c 2, the specbun is absolutely continuous and 
the states are extended. Our result shows that, in this case, the asymptotic decay of C(t) 
has the same form as for the ID periodic lattice. 

3.2. The Fibonacci chain method 

We now study the diagonal and off-diagonal models. The behaviour of C(r) for various 
modulations is illustrated in figures 3 and 4, for the diagonal and off-diagonal models, 
respectively. 

Firstly, we would like to point out that, in the case U = 0 or U = 1, which corresponds to 
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-2.0 ' \ ,  I 
0.0 1 .o 2.0 3.0 4.0 

logt 

6.0 
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0 
0.0 ' 

0.0 1 .o 2.0 
logt 

Fi- 2. Autocorrelation function for Ihe H q e r  model; (a) log C(t) v m u s  log f for A = 1.2.3: 
(b) f C ( f )  versus l o g  for A = 1. 

the periodic case, our numerical results show that C(t) is the same as that which we obtain 
by taking the integration of the Bessel function as explained in section 2. This indicates 
that, in the periodic limit U = 0 or v = 1 of the Fibonacci chain model, C(t )  - t-6 with 
lim,,,6 = 1, and not 0.84 as obtained by Ketzmerick et al [16]. Furthermore, we find 
that the curve log C ( t )  versus logr presented in figures 3 and 4 cannot be well fitted by the 
least-squares fit in the region of weak modulations. Instead, C(t) can be fitted in general as 

(37) 

For instance, for the diagonal model with U = 0.05, CO = -1.341+0.001, C I  = 1.912fO.M)l 
and y = 0.07 zk 0.01; if U = 0.1, then CO = -0.286 f 0.001, c1 = 0.866 zk 0.001 and 
y = 0.14 f 0.01. The exponent y increases with an increase in the modulation strength. 
This property can be clearly seen in figure 5. The relation (37) indicates that C( t )  goes to 
zero asymptotically following the power law C ( t )  - rS, where 6 = 1 - y and 0 < 6 < 1. 
It is found that when U > 0.2 or U > 1.2,6 can be well evaluated by doing the least-squares 
fit directly to the curve of logC(t) versus logr. This is because for large U or U, y is 
large and the second term in (37) then plays the dominant rule even for small time scales. 

tC(t1 - CO + C,tY 0 < y < 1. 
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0.0 I 

-3.0 I I 
0.0 1 .o 2.0 3.0 4.0 

1091 

F l y r e  3. Log-log plot of CO) versus I for the Fibonacci chain (diagonal model) wilh U = 0. I .  
0.2, 0.3, , .., 0.9 and I ,  sucessively. 

0.0 , I 

-3.0 I 
0.0 1.0 2.0 3.0 4.0 

logt 
Fi- 4. Log-log plot of C(t) versus t for the Fibonacci chain (off-diagonal model) with I' = 
1.1, 1.2, 1.3. . . . , 2.9 and 3. sucessively. 

The reason why the previous calculation gives S < 0.84 is the following. In the region of 
weak modulation, y is small. If the time scale is not large enough, CO can play a role. In 
fact, we also find the value 0.84 when we do the least-squares fit directly to the curve of 
logC(r) versus logt in the limit U -+ 0 or U I. The dependence of the exponent 6 on 
the modulation strength is illustrated in figures 10 and 11. 

4. The 2D and 3D Fibonacci quasilattices 

Several solvable high-dimensional quasiialtices generated from ID quasiperiodic models 
have been proposed to understand the spectral properties of high-dimensional quasicrystals 
[7-91. Among these, the 2D Fibonacci quasilattices have been studied in detail [8, 91. 
Recently, the 3D Fibonacci quasilattice has been used by C Sire [3] to analyse the electronic 
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1.0 
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transport properties of real quasicrystals by calculating the Boltzmann conductivity. 2D (3D) 
Fibonacci quasilattices are built on square (cubic) lattices with a tight-binding Hamiltonian 
related to the 1D Fibonacci model. 

(i) Diagonal model. The nearest-neighbour hopping integrals are U,, = 1; the site energy 
uj at the ith site is separable, i.e., ui = uix + uiy (or ui = uiX + uiy +U; ;  for the 3D case), 
where = x ,  y. z) independently forms the Fibonacci sequence with two kinds of values 
-U and U. 

(ii) Off-diagonal model. The site energies are ui = 0. The hopping parameters along 
the x and y axes for 2D or x ,  y and z for 3D follow the Fibonacci sequence, with two 
kinds of parameters 1 and U. 

It has been found that the spectral properties of the above models depend on the 
parameters of the Hamiltonian [8 ,9 ] .  The spectrum can be band-like with finite number 
of gaps, fractal-like with zero band width or a mixture of both with some parts band-like 
and some parts fractal-like. For the 2D diagonal model two kinds of transition exist about 
the nature of the measure [9]. In the region 0 < U < 0.6, the spectrum is band-like with 
finite a number of gaps. For 0.6 < U < 2.0, the spectrum contains fractal parts while the 
total band width is still finite. If U > 2.0, the measure is then fractal-like with zero band 
width, An interesting question is therefore: do these transitions of the spectra correspond 
to transitions of the electronic dynamics in the system? 

Let us use &,mn and qLnp to denote the wavefunction at the site numbered by (m.  n) 
and (m.  n. p ) ,  for 2D and 3D quasilattices, respectively. One can show [8,9] that the 
eigenenergies and the eigenstates of 2D and 3D Fibonacci quasilattices can be given by 

u.O.05 
7.0.07 

u=o.1 
y=0.14 

and 
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respectively, where E x ,  Ey and EI are the eigenenergies of the ID Fibonacci chain, and 
&(Ex) ,  &(Er) and @ p ( E i )  are the corresponding eigenstates. 

We now study the autocorrelation functions of 2D and 3D Fibonacci quasilattices for 
the diagonal and off-diagonal models. In the following, we prove that the autocorrelation 
function C ( t )  of these 2D and 3D Fibonacci quasilattices can be calculated from knowledge 
of the corresponding quantity in the 1D Fibonacci chain. We shall focus on the 2D Fibonacci 
quasilattice. The neatment of the 3D case follows the same procedure. 

By solving the static Schrodinger equation of the 1D Fibonacci chain with N sites, we 
obtain N eigenenergies E j ( j  = 1,2,3, . . . N) and the corresponding eigenstates &,(Ej). 
Since the eigenstates of 1D Fibonacci chain form a complete orthonomal set, one has 

J X Bong  and R Mosseri 

where E is the eigenenergy of the 2D system. (44) and (45) indicate that the N x N 
eigenstates obtained by the products of the eigenstates of the ID Fibonacci chain are still 
complete and orthonomal. Now, suppose that an electron is initially placed at the site 
numbered (mono). According to (7), the wavefunction at site mn at time i is given by 

= z e x p  ( - i E f ) ~ ~ ~ = ~ ( E ) @ m ~ ( E ) .  (46) 
E 

@ ~ t )  = C e x p ( - - i E y f ) @ ~ ~ ( E Y ) @ ~ ( E y ) .  (49) 
E" 

(47) gives the autocorrelation functions P(r) and C(r) of the 2D Fibonacci quasilattice 

P(r) = f"o( l )pno(r)  (50) 

C ( t )  - Pmo(#')Pno(f')dt' (51) 

where PQ(t) and Pn,(t) are the probabilities of the 1D Fibonacci chain. For the 3D 
Fibonacci quasilattice, if the electron is initially placed at the site numbered as monopo, the 
same analysis gives 

t 2 
P(t) = Pmo(f)Ro(t)Pm(f) (52) 

C ( i )  = - Pm,(t')P,,(t')Ppo(t')dt'. (53) f /o 
From (503-(53), one sees that the autocorrelation functions of 2D and 3D Fibonacci 
quasilattices can be calculated from the corresponding quanties in the 1D Fibonacci chain. 
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As a consequence, we can treat large enough high-dimensional systems to get information 
about the long-time behaviour of the autocorrelation functions. In our calculation, the size 
of the Fibonacci chain is N w 3000. The 2D and 3D quasilattices studied therefore have 
N w lo7 and 1Olo sites, respectively. 

We numerically calculate C(t)  for 2D and 3D Fibonacci quasilattices by using the 
function P ( t )  previously derived for the Fibonacci chain 

C ( t )  = f I' P D ( t ' )  dr' (54) 

where D is the dimension. This corresponds to the case mo = no for 2D and mo = no = po 
for 3D. As an example, the decay of C(t)  with various Hamiltonian parameters are presented 
in figures 6 and 7 for the off-diagonal model. At first sight, figures 6 and 7 show the power- 
law decay C(r)  - t-*. According to the scaling analysis of 1D quasiperiodic systems, and 
especially after having stressed the role of the subdominant parts occumng in the periodic 
lattices in (26) and (27), a careful tleatment is still very necessary in order to get the 
exponent 6. 

0.0 

-1.0 

-3.0 

-4.0, I 
1 .a 2.0 3.0 4.0 

lOQt 

Figure 6. Log-log plot of C(1) versus t for the 2D Fibonacci quasilartice (off-diagonal model) 
with vmous modulations (as in figure 4). 

We have seen that, for the Fibonacci chain, C( t )  - t-* with 0 < 8 < 1. Here, the 
numerical results show that, unlike the 1D case, there exist two different ranges of parameters 
which correspond to different decays of C(r) for the high-dimensional quasilattices. In 
region I, 8 = 1, irrespective of the modulation strength of the quasiperiodicity. In region 
11. 0 i 6 < 1 and 6 decreases as the modulation strength increases. Let us analyse the 2D 
and 3D Fibonacci diagonal models in more detail. We find that C ( t )  in these two regions 
shows the following behaviour. 

where U ,  0.9 when D = 3 ,  respectively. This behaviour is 
clearly seen in figures 8 and 9. The exponent y decreases from D - 1 to 0 as U increases. 
For u = 0, we find y = 1 ( y  = 2) for the 2D (3D) periodic lattice, as expected. Formula 
(55) gives limr + 00, c(t) - r - I .  

Region II U z uC c(t) - (c0 + clrY)t-' o < y < 1 (56) 

0.6 when D = 2 and uC 



8394 J X Zhong and R Mosseri 

0.0 I 

v=2 
-4.0 

0.0 1 .o 2.0 3.0 4.0 
log1 

Figure 7. Log-log plot of C(t)  versus f for the 3D Fibonacci quasilattia (off-diagonal model) 
wilh the same panmeters as in figure 4. 

In this region, C( t )  exhibits the same behaviour as for the Fibonacci chain model. We 
illustrate this behaviour in figure 9. The exponent y increases as U increases. So for large 
U ,  the exponent 6 can be evaluated by fitting the curve logC(t) versus logt. It follows 
from (56) that C(t) - tw6 with 0 < 6 < 1 for U > U,. For the 2D and 3D off-diagonal 
models, the decay of C(r) displays the same properties. We find that the critical values 
U, corresponding to the crossover of C( t )  are U, w 1.7 and uc w 2.1 for 2D and 3D 
quasilattices, respectively. In figures 10 and 11, we plot the dependence of the exponent 6 
on the modulations U and U. 

So in conclusion, we have shown that the autocorrelation functions C(r) of ID, 2D 
and 3D Fibonacci quasilattices display a power-law decay C(r) - r6. For a ID Fibonacci 
chain, we have 0 e 8 e 1,  which corresponds to a non-ballistic diffusion of the electron. 
In contrast to the ID case, we find a crossover for 2D and 3D Fibonacci quasilattices, i.e., 
from ballistic-like behaviour to a non-ballistic-like behaviour. If the modulation strength 
is less than a critical value, C(r) still has the form C(t )  - t-' characteristic of a ballistic 
motion of the electron in periodic lattices. If the modulation is larger than this critical value, 
C ( t )  then behaves as C ( t )  - t-6 with 0 < 8 < 1. 

The crossover of the exponent 6 in higher-dimensional Fibonacci quasilattices can be 
understood using the following argument. (Note: this argument has been proposed by C 
Sire and J Bellissard. The authors are very grateful to them.) For the 1D Fibonacci chain, 
we have C(r) - t-'I with 0 c 61 < 1. Then one has 

P ( t )  - t-61 0<81  el. (57) 
According to (50) and (52), one can see that the probability P ( t )  for 2D and 3D Fibonacci 
quasilattices behaves asymptotically as P(r )  - T - ~  where 0 e E < 2 for a 2D Fibonacci 
quasilattice and 0 e E < 3 for 3D Fibonacci quasilattice, respectively. We know that, 
if P ( t )  - I-" and E z 1, the integral fC( t )  = J",' P(t')dt' is convergent (note that 
P(r = 0) = 1). Thus one has C(r) - r- l  . Since 81 continuously decreases from 1 to 
0, one concludes that there exists a region in which the integral tC( t )  is convergent and 
C(t)  - t - ' .  Now let us look again at our numerical results. It follows from (54) and the 
above discussions that 

D6t > 1 j C( t )  - t-1 D61 < I ==+ C( t )  - t-1 (58) 
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Figure 8. Plot of tC(t)  versus 7-Y for the ZD and 3D Fibonacci quasilattices (diagonal model): 
(a) ZD Fibonacci quasilattice with U = 0.1. 0.2, 0.3, 0.4, 0.5, 0.6 corresponding to y = 0.7, 0.5, 
0.35. 0.25, 0.08, 0.04, respectively: (b) 3D Fibonacci quasilattice with U = 0.1, 0.5, 0.6, 0.7. 
0.8 corresponding to y = 1.8. 0.55, 0.45, 0.27, 0.08, respectively. 

where 61 is the scaling exponent of C( t )  for a 1D Fibonacci chain. Therefore D6, = 1 
gives the critical point of the crossover which comesponds to the modulation strength where 
the exponent 61 of the 1D Fibonacci chain has the value 6 ,  = $ and SI = f for 2D and 
3D Fibonacci quasilattices, respectively. For the diagonal model, the U, given by the above 
argument are uc GZ 0.6 and U, % 0.9 for 2D and 3D systems (see figure IO), which agrees 
quite well with the numerical results. Moreover, we find that the exponent 6 is D times that 
of the ID case. The above argument is also in good agreement with the numerical results 
of the off-diagonal models. 

5. The autocorrelation function and the spectral measure 

The autocorrelation function is directly related to the spectral measure of the system. The 
probability P ( t )  can be written as 

P ( t )  = I/exp(-iEt)dp(E) (59) 
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Ffgure 9. Plot of tC(r) versus t Y  for the 2D and 3D Fibonafci quasilaltices (diagonal model), 
(a) 2D Fibonacci quasilattice with U = 0.7. 0.8, 0.9 corresponding lo y = 0.12, 0.23. 0.32. 
respectively; (b) 30 Fibonacci qunsilonice with U =1.0. 1 . 1 .  1.2 corresponding lo y = 0.13, 
0.27, 0.4. respectively. 

which is the square of the modulus of the Fourierdtieltjes transform of the measure p ( E )  
at the site where the electron is initially placed. It has been shown [I61 that the power-law 
decay of C(t )  is related to the fractal dimension D2 of the spectral measures of singularly 
continuous or absolutely continuous spectra. The argument is as follows. 

The fractal dimension D2 (the correlation dimension of the measure) is defined as 

where R(l)  is the spectral probability. Using the box function 

with A = [ E  - 1/2, E + 1/21, R(I) can be rewritten as 

= / d M E )  1 xn(E, E')dp(E' ) .  
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U 

Figure 10. Exponent 6 versus the modulation strength U for C(l)(- t-') in the lD, ?D and 3D 
Fibonacci quasilattices (diagond model). 

The Fourier transform of the above box function reads 
sin (is / 2 )  

r 
+m 

XA(E. E') = ' / exp [i(E - E')r] dr. 
r -m 

Inserting (63) into (62), one has 

d r  dp(E'). I sin (ls/2) 
R ( O = - f - /  R dp(E)/ ( l r e x p [ i ( E - E ' ) r ]  r 

According to the properties of the Fourier-Stieltjes transform, for a singularly continuous 
or absolutely continuous measure p ( E ) ,  if the measure is of bounded variation (this is the 
usual case for a tight-binding Hamiltonian problem) 

R ( l )  = - = 1 /+m -m sin (Is/') exp(iEr)d~(E)/exp(-iE'r)diL(E'), 

Finally one has 

Assuming a pure power-law behaviour either for R(1) or for C ( t ) ,  Ketzmerick et ai  [I61 
have claimed that they can prove 

(67) R(I) - Is (1 --t 0)  % C( t )  - t-' ( t  + CO) 

for 0 < 6 < 1 and 6 = Dz according to (60). However the proof is not given. Using 
a technique similar to that developed in the scaling analysis of Green's function [6], we 
present a proof for the above relationship between the scaling behaviours of R(1) and C(t ) .  

Before discussing the relation between R(Z) and C(t) ,  we need to give a clear definition 
of the scaling exponent 6. For a positive function g(c) in [0,1], we consider the following 
integral 
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We shall say that g(t) - 8,  if Jg(6') converges for 6' < 6 and diverges if 6' > 6. For 
6; < S;, we have Js(6; )  < Jg(6;). Then if g(c) - E*+ the scaling exponent 8 can be defined 

J X Zhong and R Mosseri 

by 
6 = Sup(S', Js(6') < +CO]. 

From (66), we have 
2x sinx P - -&. 

R(I) = 2 n o  j+;' ( I ) X 

Now we consider the following integral 

Use (70) and let 2 x / l  = t ,  

Let Q(r) = tC(r),  then we have 

Inspecting the integral we have 

since 
lim Q(f) -+ f 
t-bo 

It follows from (74) that 

J&(S') = lim Q(r)fs-' + (1 -S')Q(r)t6'-2dt+ (1 -6')Q(l/f)r-6'di 

for 6' > 0. One knows that the integral 
t-cc I '  I '  

is convergent for 0 < 6' < 1. Because of the relation (75), the integral I (1 - 6') Q (r)ts'-' df 

is always convergent for 6' > 0. Now we can see that for 0 < 6' < 1, if 
I 

IQ(#) = 1 Q(l/t)t-" dt 

converges (diverges), then J R ( ~ ' )  converges (diverges) and vice versa. We then prove the 
relation (67). Let us stress that here attention is only paid to the correspondence between 
the scaling 6 and 4, in the limit f + CO and I -+ 0. Keeping in mind the subtleties studied 
above in the scaling analysis of the autocorelation function, a very careful treatment in the 
scaling analysis of the fractal dimension Dz is also needed. In the following, we first study 
the periodic lattices to get some understanding about the influence of the subdominant term 
of R ( l )  in evaluating the scaling Dz. 
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5.1. Periodic lattices 

We still consider the 1D periodic chain, 2D square lattice and 3D cubic lattice. According 
to (66). R(2) for those lattices is given by 

Letting x = t ' / t ,  from (10) we have 

Now let lt/2 = x, from (80) one has 

with 

2 
X 

Since 

we have 

Using the property (21) of the Bessel function, it is easy to find 

IC - I D .  (87) 

So we find that R(1) (when 1 -+ 0) has a similar behaviour to C ( t )  (when t -+ CO), for 
both their dominant and subdominant parts. This is the reason why the previous calculation 
for D2 of the spectral measure of the Fibonacci chain shows Dz = 0.84 in the periodic 
limit 1161. Numerical calculations for the correlation dimensions D2 of the spectra of 1D 
quasiperiodic systems such as the Harper model and the Fibonacci chain, have been carried 
out by Ketzmerick el a1 . The authors claimed that they found good agreement between the 
values for D2 and S. However, because of the way the scaling analysis was done, we have 
found it necessary to perform the numerical studies again, along the same lines as those 
discussed above. 

Numerically, DZ can be calculated by the box-counting technique. Dividing the energy 
range into boxes Bj of length I ,  R(1) is then given by 
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Figure 11. Exponent 6 versus the modularion strength U for C(t) ( -  r8) in the ID, 20 and 3D 
Fibonacci quasilattiw (off-diagonal model). 

5.2, Quasiperiodic systems 

Figure 12 shows the scaling behaviour of the spectral probability R(1) of the Harper model. 
To compare R(I) with C( t ) ,  we plot logR(I) and logC(t) together. From figure 12(a), one 
can see that 

W) - C(l/O (89) 
which gives Dz = 6 for R(I) - I" (1 + 0) and C( t )  - f-' (t + 03). The agreement 
for h c 2 can be more clearly seen in figure 12(b). The previous result [I61 for A < 2 
suggested that Dl = 0.84. Now we realize that this low estimated value comes from the 
logarithmic contribution which appears in C(r), as discussed previously. In the case of 
h = 2, R(I) exhibits a periodic oscillation which has the same period as that of C( t ) .  This 
is why C ( t )  displays periodic oscillatory behaviour. For the ID Fibonacci chain, numerical 
results for various modulations confirm the existence of relation (89). As an example, the 
comparison between R(I) and C( t )  for the Fibonacci chain (diagonal model) with U = 0.1 
and U = 0.5 is illustrated in figure 13. 

As stated above, the spectrum of the high-dimensional Fibonacci quasilattice can be 
obtained from that of the Fibonacci chain. From (38) and (40), it is easy to find [9] that the 
density of states of 2D and 3D Fibonacci quasilattices can be expressed as the convolution 
of the density of states of the Fibonacci chain 

2D p ( E )  = / dE'p(E')p(E - E') (90) 

3D p ( E )  = 11 dE'dE"p(E')p(E")p(E - E' -  E"). (91) 

Moreover, according to the definition of the local density of states (LDOS), the LDOS at 
site (m.  n )  in 2D and (m,  n, p )  in 3D Fibonacci quasilattices are given by 

2D pmn(E) = dE'Pm(E')pn(E - E') (92) 

3D ,om&) = dE'dE"p,(E')p,(E")p,(E - E'-  E"). (93) 

s 
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Figure 12. Probability R(1) and autocorrelation Function C(r) for the Harper model: (a) A = 1.2 
and 3; (b) A = 1. 

In our calculations, the LDOS of the Fibonacci chain is obtained by the RSRG techniques 
developed in [4]. Using (92) and (93), we can calculate the LDOS and R(I) of the 2D and 
3D Fibonacci lattices. Our results for R(I) show that the relation (89) still holds. Instead of 
repeating the analysis to show this agreement, we now pay attention to the band structures. 
Figures 14 and 15 are the LDOS of 2D and 3D Fibonacci quasilattices (diagonal model) 
with various modulations. For the 2D system, one can see from figure 14 that the LDOS 
for 0 < U < 0.6 is quite different from that for U > 0.6, which confirms the transition of the 
spectrum found by Ashraff et al [9 ] ,  i.e., a transition from a spectrum with a finite number 
of gaps to one with an infinite number of gaps. For the 3D Fibonacci quasilattice, we 
find that a similar transition occurs near 0.9. This transition can be seen from the different 
behaviours of the LDOS illustrated in figure 15. This indicates that the critical values of the 
transition for the behaviour of C(t )  correspond to the critical values where the behaviour 
of the spectrum changes. 
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Solid line: logR(I) 

6. Conclusion and discussion 

We have studied the autocorrelation functions C ( t )  of periodic lattices, the Harper model 
and the lD, 2D and 3D Fibonacci quasilattices. It was found that, for all of these systems, 
C( t )  has a power-law decay C(r) - t-*. We have emphasized that one should take care 
in the scaling analysis in order to get a correct picture of the decay of the autocorrelation 
function. The decays of C( t ) ,  including their subdominant parts, have the following forms: 

( I )  Periodic lattices: 

The above relations give limr+cu6 = 1, which corresponds to the case of ballistic motion 
of the electron. 

( 2 )  Harper model: 

where f ( x )  is a periodic function. 

(3) ID,  2 0  and 30 Fibonacci quasilatrices 
For diagonal models 
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Figure 14. LDOS of lhe 2D Fibonacci quasilattice 
(dixgonal model) with (a) U = 0.4. (b) U = 0.5, ( c )  
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Figure 15. LDOS of the 3D Fibonacci quasilattice 
(diagonal model) with (a) U = 0.7, (b) U = 0.8, (c)  
U = 0.9, (d) U = 1.0. 

where U is the modulation strength of the site energies and U, C 0.6 and 0.9 for 2D and 3D 
Fibonacci quasilattices, respectively. For the off-diagonal model, we find similar properties. 
We have emphasized that, to correctly understand the nature of the dynamical behaviour of 
an electron, one should be very careful in the scaling analysis. 

From (97), one can see that, for the Harper model with h < 2, the decay of C ( t )  
has the same form as that of the ID periodic lattice, i.e., lim,,,S = 1. For the Harper 
model with i = 2 and the Fibonacci chain, the decays of C ( t )  have a scaling exponent 
0 < 6 < 1, showing that the motion of the electron is different from the ballistic motion 
found in periodic lattices. For the high-dimensional Fibonacci quasilattices. (101)-(104) 
strongly suggest that there exists a transition concerning the probability at the origin of the 
electron. Indeed, in the region 0 < U < uc, lim,,m C( t )  - t-' with the same exponent 
as that occuring in the case of ballistic motion in periodic lattices, while C( t )  - td with 
0 < 6 < 1 when U > uc. 

We have also studied the relationship between the decays of the autocorrelation function 
C ( t )  and the fractal dimension of the spectral measure. A proof is given, which shows 
that R ( f )  - 1' ( I  + 0) C ( t )  - t -S (t  -+ 00) for 0 < 6 < 1, where R(I )  is 
the spectral probability of a singularly continuous or absolutely continuous measure with 
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bounded variation. The LDOS of 2D and 3D Fibonacci quasilattices indicate that the critical 
value uc for the diagonal model or U, for the off-diagonal model corresponds to that value 
where the spectrum changes behaviour from a band-like spectrum with finite number of 
gaps to another behaviour with an infinite number of gaps. 
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